
eBPF and Linux Container Security

404 Wyman Street
Suite 357
Waltham, MA 02451

www.uptycs.com

03/06/2022

1

Key eBPF Concepts
eBPF (enhanced Berkeley Packet Filter) is a Linux kernel technology that offers a powerful and
stable method of observing the Linux kernel. The eBPF sensor is like having a VM in the kernel
that can safely run hooks (i.e. programs) for filtering data like network events, system calls,
packets, and more. Many organizations have adopted eBPF at scale due to guaranteed stability,
benefits of working directly in the kernel, and potential savings when factoring in the compute
process for gathering telemetry on Linux servers and containers. eBPF is a safe way of interacting
with the Linux kernel and a preferred alternative to plugging into the auditd framework.

Core benefits:

 • Speed and performance. eBPF can move packet processing from the kernel-space and into
the user-space. eBPF is also a just-in-time (JIT) compiler. After the bytecode is compiled,
eBPF is invoked rather than a new interpretation of the bytecode for every method.

 • Low intrusiveness. When leveraged as a debugger, eBPF doesn’t need to stop a program to
observe its state.

 • Security. Programs are effectively sandboxed, meaning kernel source code remains
protected and unchanged. The verification step ensures that resources don’t get choked up
with programs that run infinite loops.

 • Convenience. It’s less work to create code that hooks kernel functions than it is to build and
maintain kernel modules.

 • Unified tracing. eBPF gives you a single, powerful, and accessible framework for tracing
processes. This increases visibility and security.

 • Programmability. Using eBPF helps increase the feature-richness of an environment without
adding additional layers. Likewise, since code is run directly in the kernel, it’s possible to store
data between eBPF events instead of dumping it like other tracers do.

Quick Overview

2

A new-era of sensors
Incorporating eBPF into osquery gives in-depth 24/7 monitoring of servers and containers, this is
especially important for cloud workloads in production. Combined with cloud automation, eBPF
offers real-time security observability, speed, and convenience for monitoring extremely high-
volume event data.

For osquery, eBPF is a preferred alternative to the auditd framework. The biggest difference
between eBPF and auditd is that, with auditd, an agent can get bogged down or cause conflicts
if multiple agents are pulling telemetry. eBPF does not run into these types of conflicts. eBPF
has major advantages for assets that have agents or logging frameworks that rely on consuming
events from auditd. Auditd can only have one one consumer of events, so using eBPF with
osquery removes that resource constraint. eBPF is also less invasive, purely operating in a read-
only mode and it runs close to the kernel, so it is more efficient.

Additionally, eBPF brings about context that auditd doesn’t have about containers. The auditd
framework can pull telemetry from containers but struggles with associating these events to
namespaces or cgroups used to isolate processes across different containers. With eBPF, Uptycs
correlates these events across your containers to provide a unified solution for monitoring
container workloads.

eBPF at scale using Uptycs: Uptycs enhancements
With eBPF, Uptycs inserts probes into the kernel to monitor events of interest to us. This happens
when osquery starts up and passes information back to the userland osquery process. This
greatly reduces the resource utilization needed for in-depth security monitoring. eBPF is easily
configured for this process and does not create any delays in deployment.

Compatibility: Uptycs also maps kernel memory to achieve compatibility across different Linux
kernel versions i.e. compile ebpf program(s) once and use it quickly and easily across various
kernel versions.

Detections: The telemetry we gather includes the ancestor list, showing who is the parent of
that process and the related ancestry. This forms a powerful detections framework for tracing
processes and forming event alerts, differing from the open-source osquery framework that
requires multiple JOINs and correlating the PID with the process table to implement a container
detections framework.

Changing the osquery game

