
eBPF and Linux 
Container Security

404 Wyman Street
Suite 357
Waltham, MA 02451
www.uptycs.com

Datasheet



Datasheet  | eBPF and Linux Container Security 2

Quick Overview

Key eBPF Concepts

eBPF (enhanced Berkeley Packet Filter) is a Linux kernel 

technology that offers a powerful and stable method of 

observing the Linux kernel. The eBPF sensor is like having a 

VM in the kernel that can safely run hooks (i.e. programs) for 

filtering data like network events, system calls, packets, and 

more. Many organizations have adopted eBPF at scale due to 

guaranteed stability, benefits of working directly in the kernel, 

and potential savings when factoring in the compute process 

for gathering telemetry on Linux servers and containers. eBPF 

is a safe way of interacting with the Linux kernel and a preferred 

alternative to plugging into the auditd framework.

Core benefits:

• Speed and performance. eBPF can move packet processing 

from the kernel-space and into the user-space. eBPF is also 

a just-in-time (JIT) compiler. After the bytecode is compiled, 

eBPF is invoked rather than a new interpretation of the 

bytecode for every method.

• Low intrusiveness. When leveraged as a debugger, eBPF 

doesn’t need to stop a program to observe its state.

• Security. Programs are effectively sandboxed, meaning 

kernel source code remains protected and unchanged. The 

verification step ensures that resources don’t get choked up 

with programs that run infinite loops.

• Convenience. It’s less work to create code that hooks kernel 

functions than it is to build and maintain kernel modules.

• Unified tracing. eBPF gives you a single, powerful, and 

accessible framework for tracing processes. This increases 

visibility and security.

• Programmability. Using eBPF helps increase the feature-

richness of an environment without adding additional layers. 

Likewise, since code is run directly in the kernel, it’s possible 

to store data between eBPF events instead of dumping it like 

other tracers do. 



About Uptycs

Uptycs, the first unified CNAPP and XDR platform, reduces risk by prioritizing your responses to threats, 

vulnerabilities, misconfigurations, sensitive data exposure, and compliance mandates across your modern 

attack surface—all from a single UI. This includes the ability to tie together threat activity as it traverses  

on-prem and cloud boundaries, thus delivering a more cohesive enterprise-wide security posture.

Start with your Detection Cloud, Google-like search, and the attack surface coverage you need today.  

Be ready for what’s next.

Shift your cybersecurity up with Uptycs.

Changing the osquery game

A new-era of sensors

Incorporating eBPF into osquery gives in-depth 24/7 monitoring 

of servers and containers, this is especially important for cloud 

workloads in production. Combined with cloud automation, 

eBPF offers real-time security observability, speed, and 

convenience for monitoring extremely high-volume event data.

For osquery, eBPF is a preferred alternative to the auditd 

framework. The biggest difference between eBPF and auditd 

is that, with auditd, an agent can get bogged down or cause 

conflicts if multiple agents are pulling telemetry. eBPF does not 

run into these types of conflicts. eBPF has major advantages 

for assets that have agents or logging frameworks that rely on 

consuming events from auditd. Auditd can only have one one 

consumer of events, so using eBPF with osquery removes that 

resource constraint. eBPF is also less invasive, purely operating 

in a read-only mode and it runs close to the kernel, so it is more 

efficient.

Additionally, eBPF brings about context that auditd doesn’t 

have about containers. The auditd framework can pull 

telemetry from containers but struggles with associating these 

events to namespaces or cgroups used to isolate processes 

across different containers. With eBPF, Uptycs correlates these 

events across your containers to provide a unified solution for 

monitoring container workloads.

eBPF at scale using Uptycs:                          
Uptycs enhancements

With eBPF, Uptycs inserts probes into the kernel to monitor 

events of interest to us. This happens when osquery starts up 

and passes information back to the userland osquery process. 

This greatly reduces the resource utilization needed for in-

depth security monitoring. eBPF is easily configured for this 

process and does not create any delays in deployment.

Compatibility: Uptycs also maps kernel memory to achieve 

compatibility across different Linux kernel versions i.e. compile 

ebpf program(s) once and use it quickly and easily across 

various kernel versions.

Detections: The telemetry we gather includes the ancestor 

list, showing who is the parent of that process and the related 

ancestry. This forms a powerful detections framework for 

tracing processes and forming event alerts, differing from the 

open-source osquery framework that requires multiple JOINs 

and correlating the PID with the process table to implement a 

container detections framework.


